SPONSOR: Focal Point LLC
Chicago, IL

CONDUCTED: 2019-05-01
ON: Aircore Blades, 16 in. nominal height - spaced 24 in. apart

TEST METHODOLOGY

Riverbank Acoustical Laboratories™ is accredited by the U.S. Department of Commerce, National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP) as an ISO 17025:2005 Laboratory (NVLAP Lab Code: 100227-0) and for this test procedure. The test report in this document conformed explicitly with ASTM C423-17: "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method." The specimen mounting was performed according to ASTM E795-16: "Standard Practices for Mounting Test Specimens During Sound Absorption Tests." A description of the measurement procedure and room specifications are available upon request. The results presented in this report apply to the sample as received from the test sponsor.

INFORMATION PROVIDED BY SPONSOR

The test specimen was designated by the sponsor as Aircore Blades, 16 in. nominal height - spaced 24 in. apart. The following nominal product information was provided by the sponsor prior to testing. The accuracy of such sponsor-provided information can affect the validity of the test results.

Product Under Test

Trade Name:	Aircore Blades
Manufacturer:	Focal Point LLC
Baffle Height:	406.4 mm (16 in.)

SPECIMEN MEASUREMENTS & TEST CONDITIONS

Through a full external visual inspection performed on the test specimen, Riverbank personnel verified the following information:

Test Specimen

Materials:	Semirigid felt paneling, aluminum
Dimensions:	5 @ 2413 mm (95 in.) x 387.35 mm (15.25 in.) as installed
Construction:	9.5 mm (0.374 in.) x 38 mm (1.496 in.) aluminum rail
	9 mm (0.354 in.) thick felt panel notched and folded into rectangular shape, adhered to aluminum rail to create approximately 9.5 mm (0.374 in.) thick airspace between felt layers
Overall Thickness:	28.58 mm (1.125 in.)
Overall Weight:	21.66 kg (47.75 lbs)
Focal Point LLC
2019-05-01

Physical Measurements (per unit)

- Dimensions: 0.39 m (15.25 in) wide by 2.41 m (95.0 in) long
- Thickness: 0.03 m (1.125 in)
- Weight: 4.33 kg (9.55 lbs)

Test Environment

- Room Volume: 291.98 m³
- Temperature: 21.8°C ± 0.0°C
- Relative Humidity: 64.05% ± 0.5%
- Barometric Pressure: 98.4 kPa

Each sound absorbing unit had an absorptive area (all exposed surfaces) of 2.03 m² (21.84 ft²). The total absorptive area (all exposed surfaces) of all sound-absorbing units was 10.15 m² (109.22 ft²). The array of units covered 6.24 m² (67.12 ft²) of the horizontal test surface (total treated area).

MOUNTING METHOD

Type J Mounting: The specimen is an array of 5 spaced sound absorbing baffles suspended from cables such that the closest face of the baffles is located approximately 1079.5 mm (42.5 in.) from the horizontal test surface. This approximates the mounting method of a typical ceiling baffle installation. The baffles were evenly distributed in a single row, spaced 609.6 mm (24 in.) apart.
Focal Point LLC
2019-05-01

Figure 1 – Specimen mounted in test chamber

Figure 2 – Detail of individual baffle

© RIVERBANK ACOUSTICAL LABORATORIES IS ACCREDITED BY NVLAP (LAB CODE 100227-0) FOR ACOUSTICAL TESTING SERVICES IN ACCORDANCE WITH ISO/IEC 17025:2005 AND FOR THIS PROCEDURE. THIS REPORT MUST NOT BE USED BY THE CLIENT TO CLAIM PRODUCT CERTIFICATION, APPROVAL, OR ENDORSEMENT BY RAL, NVLAP, NIST, OR ANY AGENCY OF THE U.S. GOVERNMENT. THIS REPORT SHALL NOT BE MODIFIED WITHOUT THE WRITTEN APPROVAL OF RAL. THE RESULTS REPORTED APPLY ONLY TO THE SPECIFIC SAMPLE SUBMITTED FOR TESTING; RAL ASSUMES NO RESPONSIBILITY FOR THE PERFORMANCE OF ANY OTHER SAMPLE.
Focal Point LLC
2019-05-01

TEST RESULTS

Note: There is currently no standardized method for calculating Absorption Coefficients from spaced object absorbers. The sound absorption performance of spaced object absorbers should not be compared directly with specimens tested as a single rectangular area (e.g. mounting types A, E, etc.).

<table>
<thead>
<tr>
<th>1/3 Octave Center Frequency (Hz)</th>
<th>Total Absorption (m²)</th>
<th>Total Absorption (Sabins)</th>
<th>Absorption per Unit (m² / Unit)</th>
<th>Absorption per Unit (Sabins / Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.32</td>
<td>3.41</td>
<td>0.06</td>
<td>0.68</td>
</tr>
<tr>
<td>** 125</td>
<td>0.76</td>
<td>8.17</td>
<td>0.15</td>
<td>1.63</td>
</tr>
<tr>
<td>160</td>
<td>1.31</td>
<td>14.11</td>
<td>0.26</td>
<td>2.82</td>
</tr>
<tr>
<td>200</td>
<td>2.00</td>
<td>21.51</td>
<td>0.40</td>
<td>4.30</td>
</tr>
<tr>
<td>** 250</td>
<td>2.54</td>
<td>27.39</td>
<td>0.51</td>
<td>5.48</td>
</tr>
<tr>
<td>315</td>
<td>2.71</td>
<td>29.14</td>
<td>0.54</td>
<td>5.83</td>
</tr>
<tr>
<td>400</td>
<td>3.04</td>
<td>32.77</td>
<td>0.61</td>
<td>6.55</td>
</tr>
<tr>
<td>** 500</td>
<td>4.01</td>
<td>43.15</td>
<td>0.80</td>
<td>8.63</td>
</tr>
<tr>
<td>630</td>
<td>4.71</td>
<td>50.72</td>
<td>0.94</td>
<td>10.14</td>
</tr>
<tr>
<td>800</td>
<td>5.32</td>
<td>57.29</td>
<td>1.06</td>
<td>11.46</td>
</tr>
<tr>
<td>** 1000</td>
<td>6.17</td>
<td>66.44</td>
<td>1.23</td>
<td>13.29</td>
</tr>
<tr>
<td>1250</td>
<td>7.08</td>
<td>76.19</td>
<td>1.42</td>
<td>15.24</td>
</tr>
<tr>
<td>1600</td>
<td>7.81</td>
<td>84.11</td>
<td>1.56</td>
<td>16.82</td>
</tr>
<tr>
<td>** 2000</td>
<td>8.60</td>
<td>92.53</td>
<td>1.72</td>
<td>18.51</td>
</tr>
<tr>
<td>2500</td>
<td>8.68</td>
<td>93.39</td>
<td>1.74</td>
<td>18.68</td>
</tr>
<tr>
<td>3150</td>
<td>8.78</td>
<td>94.54</td>
<td>1.76</td>
<td>18.91</td>
</tr>
<tr>
<td>** 4000</td>
<td>8.80</td>
<td>94.72</td>
<td>1.76</td>
<td>18.94</td>
</tr>
<tr>
<td>5000</td>
<td>8.77</td>
<td>94.35</td>
<td>1.75</td>
<td>18.87</td>
</tr>
</tbody>
</table>

Tested by Marc Sciaky
Senior Experimentalist

Report by Malcolm Kelly
Test Engineer, Acoustician

Approved by Eric P. Wolfram
Laboratory Manager

Digitally signed by Eric P. Wolfram
DN: cn=Eric P Wolfram, c=US, o=Riverbank Acoustical Laboratories, l=Geneva, st=IL, c=US
Date: 2019.05.23 11:42:30 -05'00"
SOUND ABSORPTION REPORT
Aircore Blades, 16 in. nominal height - spaced 24 in. apart

SPECIMEN ABSORPTION (m² / OBJECT)

FREQUENCY (Hz)
Focal Point LLC
2019-05-01

APPENDIX A: Extended Frequency Range Data

Specimen: Aircore Blades, 16 in. nominal height - spaced 24 in. apart (See Full Report)

The following non-accredited data were obtained in accordance with ASTM C423-17, but extend beyond the defined frequency range of 100Hz to 5,000Hz. These unofficial results are representative of the RAL test environment only and intended for research & comparison purposes.

<table>
<thead>
<tr>
<th>1/3 Octave Band Center Frequency (Hz)</th>
<th>Total Absorption (m²)</th>
<th>Total Absorption (Sabins)</th>
<th>Absorption per Unit (m² / Unit)</th>
<th>Absorption per Unit (Sabins / Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5</td>
<td>0.18</td>
<td>1.90</td>
<td>0.04</td>
<td>0.38</td>
</tr>
<tr>
<td>40</td>
<td>0.14</td>
<td>1.54</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>50</td>
<td>0.80</td>
<td>8.57</td>
<td>0.16</td>
<td>1.71</td>
</tr>
<tr>
<td>63</td>
<td>0.14</td>
<td>1.54</td>
<td>0.03</td>
<td>0.31</td>
</tr>
<tr>
<td>80</td>
<td>0.48</td>
<td>5.16</td>
<td>0.10</td>
<td>1.03</td>
</tr>
<tr>
<td>100</td>
<td>0.32</td>
<td>3.41</td>
<td>0.06</td>
<td>0.68</td>
</tr>
<tr>
<td>125</td>
<td>0.76</td>
<td>8.17</td>
<td>0.15</td>
<td>1.63</td>
</tr>
<tr>
<td>160</td>
<td>1.31</td>
<td>14.11</td>
<td>0.26</td>
<td>2.82</td>
</tr>
<tr>
<td>200</td>
<td>2.00</td>
<td>21.51</td>
<td>0.40</td>
<td>4.30</td>
</tr>
<tr>
<td>250</td>
<td>2.54</td>
<td>27.39</td>
<td>0.51</td>
<td>5.48</td>
</tr>
<tr>
<td>315</td>
<td>2.71</td>
<td>29.14</td>
<td>0.54</td>
<td>5.83</td>
</tr>
<tr>
<td>400</td>
<td>3.04</td>
<td>32.77</td>
<td>0.61</td>
<td>6.55</td>
</tr>
<tr>
<td>500</td>
<td>4.01</td>
<td>43.15</td>
<td>0.80</td>
<td>8.63</td>
</tr>
<tr>
<td>630</td>
<td>4.71</td>
<td>50.72</td>
<td>0.94</td>
<td>10.14</td>
</tr>
<tr>
<td>800</td>
<td>5.32</td>
<td>57.29</td>
<td>1.06</td>
<td>11.46</td>
</tr>
<tr>
<td>1000</td>
<td>6.17</td>
<td>66.44</td>
<td>1.23</td>
<td>13.29</td>
</tr>
<tr>
<td>1250</td>
<td>7.08</td>
<td>76.19</td>
<td>1.42</td>
<td>15.24</td>
</tr>
<tr>
<td>1600</td>
<td>7.81</td>
<td>84.11</td>
<td>1.56</td>
<td>16.82</td>
</tr>
<tr>
<td>2000</td>
<td>8.60</td>
<td>92.53</td>
<td>1.72</td>
<td>18.51</td>
</tr>
<tr>
<td>2500</td>
<td>8.68</td>
<td>93.39</td>
<td>1.74</td>
<td>18.68</td>
</tr>
<tr>
<td>3150</td>
<td>8.78</td>
<td>94.54</td>
<td>1.76</td>
<td>18.91</td>
</tr>
<tr>
<td>4000</td>
<td>8.80</td>
<td>94.72</td>
<td>1.76</td>
<td>18.94</td>
</tr>
<tr>
<td>5000</td>
<td>8.77</td>
<td>94.35</td>
<td>1.75</td>
<td>18.87</td>
</tr>
<tr>
<td>6300</td>
<td>8.61</td>
<td>92.64</td>
<td>1.72</td>
<td>18.53</td>
</tr>
<tr>
<td>8000</td>
<td>8.74</td>
<td>94.11</td>
<td>1.75</td>
<td>18.82</td>
</tr>
<tr>
<td>10000</td>
<td>8.88</td>
<td>95.62</td>
<td>1.78</td>
<td>19.12</td>
</tr>
<tr>
<td>12500</td>
<td>8.95</td>
<td>96.39</td>
<td>1.79</td>
<td>19.28</td>
</tr>
</tbody>
</table>
APPENDIX B: Instruments of Traceability
Specimen: Aircore Blades, 16 in. nominal height - spaced 24 in. apart (See Full Report)

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
<th>Serial Number</th>
<th>Date of Certification</th>
<th>Calibration Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>Type 3160-A-042</td>
<td>System 1</td>
<td>2018-08-09</td>
<td>2019-08-09</td>
</tr>
<tr>
<td>Bruel & Kjaer Mic And Preamp</td>
<td>Type 4943-B-001</td>
<td>2311428</td>
<td>2018-09-28</td>
<td>2019-09-28</td>
</tr>
<tr>
<td>Bruel & Kjaer Pistonphone</td>
<td>Type 4228</td>
<td>2781248</td>
<td>2018-08-06</td>
<td>2019-08-06</td>
</tr>
<tr>
<td>EXTECH Hygro 662</td>
<td>SD700</td>
<td>A083662</td>
<td>2018-11-29</td>
<td>2019-11-29</td>
</tr>
</tbody>
</table>

APPENDIX C: Revisions to Original Test Report
Specimen: Aircore Blades, 16 in. nominal height - spaced 24 in. apart (See Full Report)

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-05-10</td>
<td>Original report issued</td>
</tr>
</tbody>
</table>

END
Appendix D to ASTM C423 Sound Absorption Test

Non-standard calculation of equivalent NRC Rating and Absorption Coefficients from spaced absorbers

At this time ASTM C423 does not provide a standard method for determining absorption coefficients of spaced object absorbers. Tests of a set of sound absorbing objects spaced apart from each other will yield higher absorption rates than a specimen joined together as a single patch (A-Mount or E-Mount). For this reason it is unfair to provide NRC or absorption coefficient ratings for specimens that consist of a spaced set of absorbers. Despite this, the architectural industry has expressed great demand for a simple "single number" rating for these treatments. Likewise, acoustical consultants desire equivalent absorption coefficient data for use in acoustical modeling software. The following is an attempt to appease these demands until ASTM develops a standard method for calculation. Several alternate non-standard calculation methods are provided. Riverbank Acoustical Laboratories prefers method 1.

Method 1) Apparent Sound Absorption Coefficient calculated from total test surface area covered

The total sound absorption yielded by the specimen is divided by the total surface area of the test surface covered by the suspended baffles, including intermediate spaces. The baffle rigging covered 6.24 m² (67.12 ft²) of horizontal test surface area. With an extra 609.6 mm (24 in.) of width to account for the space between the tested array and what would be the next baffle in a larger array, the surface area comes to 7.71 m² (82.96 ft²) Apparent Noise Reduction Coefficient (NRC) rating and Sound Absorption Average (SAA) figures are calculated from this data based on the methods described in ASTM C423-17. This may be the most accurate method for comparing baffle arrays to ceiling tile products. The apparent sound absorption coefficient data can be assigned to a single horizontal surface or plane in acoustical modeling software for approximation of baffle array performance. Such approximations rely on the assumptions that baffle spacing is similar to that of the tested array, that there would be negligible space between adjacent rows of baffles, and that the installation occurs over a perfectly reflective ceiling surface.

Method 2) Apparent Sound Absorption Coefficient calculated from total exposed surface area of specimen

The total sound absorption yielded by the specimen is divided by the total surface area of all exposed specimen faces (2.03 m² (21.84 ft²) per baffle x 5 baffles = 10.15 m² (109.22 ft²) total surface area). Apparent Noise Reduction Coefficient (NRC) rating and Sound Absorption Average (SAA) figures are calculated from this data based on the methods described in ASTM C423-17. This method shows the actual absorption occurring at the exposed surfaces, but does not provide a fair comparison with materials mounted as a uniform patch (in A-mount or E-mount).

Method 3) Apparent Sound Absorption Coefficient calculated from one face per baffle

The total sound absorption yielded by the specimen is divided by the surface area of one side of one large face for each baffle in the specimen (0.93 m² (10.06 ft²) per baffle x 5 baffles = 4.67 m² (50.30 ft²) total surface area). Apparent Noise Reduction Coefficient (NRC) rating and Sound Absorption Average (SAA) figures are calculated from this data based on the methods described in ASTM C423-17. This method is favored by some material manufacturers since it yields very high NRC figures, but does not provide a fair comparison with other ceiling tile or wall panel products. Riverbank Acoustical Laboratories recommends that results obtained from this method be used for research and comparison purposes only; such results should not be used for marketed claims of product performance.
Appendix D: Data

Note: See full test report for details of mounting position, spacing, and configuration, as these parameters greatly affect sound absorption performance.

<table>
<thead>
<tr>
<th>Specimen Absorption</th>
<th>Method 1</th>
<th></th>
<th>Method 2</th>
<th></th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apparent Abs. Coefficient From Total Coverage Area</td>
<td></td>
<td>Apparent Abs. Coefficient From Total Exposed Surface Area</td>
<td></td>
<td>Apparent Abs. Coefficient From One Face/Baffle</td>
</tr>
<tr>
<td>Freq. (Hz)</td>
<td>Sabins</td>
<td>Sabins / Unit</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>31.5</td>
<td>1.90</td>
<td>0.38</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>40</td>
<td>1.54</td>
<td>0.31</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>50</td>
<td>8.57</td>
<td>1.71</td>
<td>0.10</td>
<td>0.08</td>
<td>0.17</td>
</tr>
<tr>
<td>63</td>
<td>1.54</td>
<td>0.31</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>80</td>
<td>5.16</td>
<td>1.03</td>
<td>0.06</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>100</td>
<td>3.41</td>
<td>0.68</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>125</td>
<td>8.17</td>
<td>1.63</td>
<td>0.10</td>
<td>0.07</td>
<td>0.16</td>
</tr>
<tr>
<td>160</td>
<td>14.11</td>
<td>2.82</td>
<td>0.17</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>200</td>
<td>21.51</td>
<td>4.30</td>
<td>0.26</td>
<td>0.20</td>
<td>0.43</td>
</tr>
<tr>
<td>250</td>
<td>27.39</td>
<td>5.48</td>
<td>0.33</td>
<td>0.25</td>
<td>0.54</td>
</tr>
<tr>
<td>315</td>
<td>29.14</td>
<td>5.83</td>
<td>0.35</td>
<td>0.27</td>
<td>0.58</td>
</tr>
<tr>
<td>400</td>
<td>32.77</td>
<td>6.55</td>
<td>0.39</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>500</td>
<td>43.15</td>
<td>8.63</td>
<td>0.52</td>
<td>0.40</td>
<td>0.86</td>
</tr>
<tr>
<td>630</td>
<td>50.72</td>
<td>10.14</td>
<td>0.61</td>
<td>0.46</td>
<td>1.01</td>
</tr>
<tr>
<td>800</td>
<td>57.29</td>
<td>11.46</td>
<td>0.69</td>
<td>0.52</td>
<td>1.14</td>
</tr>
<tr>
<td>1,000</td>
<td>66.44</td>
<td>13.29</td>
<td>0.80</td>
<td>0.61</td>
<td>1.32</td>
</tr>
<tr>
<td>1,250</td>
<td>76.19</td>
<td>15.24</td>
<td>0.92</td>
<td>0.70</td>
<td>1.51</td>
</tr>
<tr>
<td>1,600</td>
<td>84.11</td>
<td>16.82</td>
<td>1.01</td>
<td>0.77</td>
<td>1.67</td>
</tr>
<tr>
<td>2,000</td>
<td>92.53</td>
<td>18.51</td>
<td>1.12</td>
<td>0.85</td>
<td>1.84</td>
</tr>
<tr>
<td>2,500</td>
<td>93.39</td>
<td>18.68</td>
<td>1.13</td>
<td>0.86</td>
<td>1.86</td>
</tr>
<tr>
<td>3,150</td>
<td>94.54</td>
<td>18.91</td>
<td>1.14</td>
<td>0.87</td>
<td>1.88</td>
</tr>
<tr>
<td>4,000</td>
<td>94.72</td>
<td>18.94</td>
<td>1.14</td>
<td>0.87</td>
<td>1.88</td>
</tr>
<tr>
<td>5,000</td>
<td>94.35</td>
<td>18.87</td>
<td>1.14</td>
<td>0.86</td>
<td>1.88</td>
</tr>
<tr>
<td>6,300</td>
<td>92.64</td>
<td>18.53</td>
<td>1.12</td>
<td>0.85</td>
<td>1.84</td>
</tr>
<tr>
<td>8,000</td>
<td>94.11</td>
<td>18.82</td>
<td>1.13</td>
<td>0.86</td>
<td>1.87</td>
</tr>
<tr>
<td>10,000</td>
<td>95.62</td>
<td>19.12</td>
<td>1.15</td>
<td>0.88</td>
<td>1.90</td>
</tr>
<tr>
<td>12,500</td>
<td>96.39</td>
<td>19.28</td>
<td>1.16</td>
<td>0.88</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Apparent NRC: 0.70 0.55 1.15
Apparent SAA: 0.68 0.51 1.12

Prepared by Malcolm Kelly
Test Engineer, Acoustician